MeSHDD: Literature-based drug-drug similarity for drug repositioning

نویسندگان

  • Adam S. Brown
  • Chirag J. Patel
چکیده

Objective Drug repositioning is a promising methodology for reducing the cost and duration of the drug discovery pipeline. We sought to develop a computational repositioning method leveraging annotations in the literature, such as Medical Subject Heading (MeSH) terms. Methods We developed software to determine significantly co-occurring drug-MeSH term pairs and a method to estimate pair-wise literature-derived distances between drugs. Results We found that literature-based drug-drug similarities predicted the number of shared indications across drug-drug pairs. Clustering drugs based on their similarity revealed both known and novel drug indications. We demonstrate the utility of our approach by generating repositioning hypotheses for the commonly used diabetes drug metformin. Conclusion Our study demonstrates that literature-derived similarity is useful for identifying potential repositioning opportunities. We provided open-source code and deployed a free-to-use, interactive application to explore our database of similarity-based drug clusters (available at http://apps.chiragjpgroup.org/MeSHDD/ ).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm

MOTIVATION Drug repositioning, which aims to identify new indications for existing drugs, offers a promising alternative to reduce the total time and cost of traditional drug development. Many computational strategies for drug repositioning have been proposed, which are based on similarities among drugs and diseases. Current studies typically use either only drug-related properties (e.g. chemic...

متن کامل

Towards Drug Repositioning: A Unified Computational Framework for Integrating Multiple Aspects of Drug Similarity and Disease Similarity

In response to the high cost and high risk associated with traditional de novo drug discovery, investigation of potential additional uses for existing drugs, also known as drug repositioning, has attracted increasing attention from both the pharmaceutical industry and the research community. In this paper, we propose a unified computational framework, called DDR, to predict novel drug-disease a...

متن کامل

O-3: Drug Repositioning by Merging Gene Expression Data Analysis and Cheminformatics Target Prediction Approaches

The transcriptional responses of drug treatments combined with a protein target prediction algorithm was utilised to associate compounds to biological genomic space. This enabled us to predict efficacy of compounds in cMap and LINCS against 181 databases of diseases extracted from GEO. 18/30 of top drugs predicted for leukemia (e.g. Leflunomide and Etoposide) and breast cancer (e.g. Tamoxifen a...

متن کامل

A two-step drug repositioning method based on a protein-protein interaction network of genes shared by two diseases and the similarity of drugs

The present study proposed a two-step drug repositioning method based on a protein-protein interaction (PPI) network of two diseases and the similarity of the drugs prescribed for one of the two. In the proposed method, first, lists of disease related genes were obtained from a meta-database called Genotator. Then genes shared by a pair of diseases were sought. At the first step of the method, ...

متن کامل

Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference

Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017